Sphere with Shells
This section presents a model composed of a sphere with two concentric shells. We use the model to explore answers to the following questions:
- What compute time is required to create successively refined resolutions in
automesh
? - What compute time is required to create these same resolutions in Sculpt?
- Given a rotational boundary condition, what are the displacement and strain fields for the voxel mesh?
- How do the results for the voxel mesh compare with the results for a conforming mesh?
- To what degree may smoothing the voxel mesh improve the results?
- To what degree may dualization of the voxel mesh improve the results?
Model
Python is used to create a segmentations, saved as .npy
files, and visualize the results.
Given
Given three concentric spheres of radius 10, 11, and 12 cm, as shown in the figure below,
Figure: Schematic cross-section of three concentric spheres of radius 10, 11, and 12 cm. Grid spacing is 1 cm.
Find
Use the following segmentation resolutions,
resolution (vox/cm) | element side length (cm) | nelx | # voxels |
---|---|---|---|
1 | 1.0 | 24 | 13,824 |
2 | 0.5 | 48 | 110,592 |
4 | 0.25 | 96 | 884,736 |
10 | 0.1 | 240 | 13,824,000 |
with a cubic domain (nelx = nely = nelz
),
to create finite element meshes.
Solution
Python Segmentation
The Python code used to generate the figures is included below.
Figure: Sphere segmentations at selected resolutions, shown in the voxel domain. Because plotting large domains with Matplotlib is slow, only the first two resolutions are shown.
Figure: Sphere segmentations with cutting plane.
Source
spheres_cont.py
r"""This module, spheres_cont.py, builds on the spheres.py module to create
high resolution, three-material, concentric spheres and export the
voxelization as a .npy file.
Example
-------
source ~/autotwin/automesh/.venv/bin/activate
python spheres_cont.py
Output
------
~/autotwin/automesh/book/analysis/sphere_with_shells/spheres_resolution_1.npy
~/autotwin/automesh/book/analysis/sphere_with_shells/spheres_resolution_2.npy
~/autotwin/automesh/book/analysis/sphere_with_shells/spheres_resolution_3.npy
~/autotwin/automesh/book/analysis/sphere_with_shells/spheres_resolution_4.npy
"""
from pathlib import Path
from typing import Final
from matplotlib.colors import LightSource, ListedColormap
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
# Visualize on a cutting plane
def plot_cutting_plane(
ax, key, data, plane="z", index=None, cmap=None, alpha=None
):
"""Plots a 2D cutting plane slice of a 3D dataset on the specified axis.
This function visualizes a slice of the 3D data array along a specified
plane (x, y, or z) and displays it using a 2D image representation. The
slice can be specified by an index, and the appearance of the plot can be
customized with a colormap and transparency level.
Parameters
----------
ax : matplotlib.axes.Axes
The axes on which to plot the cutting plane.
key : str
A descriptive label for the dataset, used in the plot title.
data : numpy.ndarray
A 3D numpy array representing the voxelized data. The shape of the
array should be (depth, height, width) corresponding to the
z, y, and x dimensions.
plane : str, optional
The plane along which to slice the data. Can be 'x', 'y', or 'z'.
Default is 'z'.
index : int, optional
The index of the slice to visualize along the specified plane. If not
provided, the function will default to the middle slice of the data
along the specified plane.
cmap : str or matplotlib.colors.Colormap, optional
The colormap to use for visualizing the slice. If not provided,
defaults to 'gray'.
alpha : float, optional
The transparency level of the plotted slice, where 0 is fully
transparent and 1 is fully opaque. If not provided, defaults to 0.8.
Returns
-------
None
This function does not return any value. It modifies the provided axes
to display the cutting plane visualization.
Notes
-----
The function sets the x and y labels based on the specified plane and
adjusts the plot title to include the key and the index of the slice.
"""
origin = "lower"
if cmap is None:
cmap = "gray"
if alpha is None:
alpha = 0.8
if plane == "z":
if index is None:
index = data.shape[2] // 2 # Middle slice
slice_data = data[:, :, index]
ax.imshow(
slice_data,
cmap=cmap,
extent=[0, data.shape[1], 0, data.shape[0]],
origin=origin,
alpha=alpha,
)
ax.set_title(f"{key}, Cut Plane at z={index}")
ax.set_xlabel("x (voxels)")
ax.set_ylabel("y (voxels)")
elif plane == "y":
if index is None:
index = data.shape[1] // 2 # Middle slice
slice_data = data[:, index, :]
ax.imshow(
slice_data,
cmap=cmap,
extent=[0, data.shape[2], 0, data.shape[0]],
origin=origin,
alpha=alpha,
)
ax.set_title(f"{key}, Cut Plane at y={index}")
ax.set_xlabel("x (voxels)")
ax.set_ylabel("z (voxels)")
elif plane == "x":
if index is None:
index = data.shape[0] // 2 # Middle slice
slice_data = data[index, :, :]
ax.imshow(
slice_data,
cmap=cmap,
extent=[0, data.shape[2], 0, data.shape[1]],
origin=origin,
alpha=alpha,
)
ax.set_title(f"{key} Cut Plane at x={index}")
ax.set_xlabel("y (voxels)")
ax.set_ylabel("z (voxels)")
def sphere(resolution: int, dtype=np.uint8) -> np.ndarray:
"""Generate a 3D voxelized representation of three concentric spheres
of 10, 11, and 12 cm, at a given resolution.
Parameters
----------
resolution : int
The resolution as voxels per centimeter. Minimum value is 1.
dtype: data-type, optional
The data type of the output array. Default is np.uint8.
Returns
-------
np.ndarray
A 3D numpy array representing the voxelized spheres. Voxels within
the inner sphere are set to 1, the intermediate shell are set to 2,
and the outer shell are set to 3. Voxels outside the spheres are
set to 0.
Raises
------
ValueError
If the resolution is less than 1.
"""
print(f"Creating sphere with resolution: {resolution}")
if resolution < 1:
raise ValueError("Resolution must be >= 1")
r10 = 10 # cm
r11 = 11 # cm
r12 = 12 # cm
# We change the algorithm a bit here so we can exactly match the radius:
# number of voxels per side length (nvps)
# nvps = 2 * r12 * resolution + 1
nvps = 2 * r12 * resolution
vox_z, vox_y, vox_x = np.mgrid[
-r12:r12:nvps * 1j,
-r12:r12:nvps * 1j,
-r12:r12:nvps * 1j,
]
domain = vox_x**2 + vox_y**2 + vox_z**2
# sphere with radius 10, indicated with "1" and background as "0"
mask_10_in = np.array(domain <= r10 * r10, dtype=dtype) # segmentation "1"
# sphere with radius 11, indicated with "1" and background as "0"
mask_11_in = np.array(domain <= r11 * r11, dtype=dtype)
# sphere with radius 12, indicated with "1" and background as "0"
mask_12_in = np.array(domain <= r12 * r12, dtype=dtype)
mask_10_11 = mask_11_in - mask_10_in # intermediate shell
mask_11_12 = mask_12_in - mask_11_in # outer shell
# mask_10_in is already the inner sphere, segmentation "1"
shell_10_11 = 2 * mask_10_11 # intermediate shell, segmentation "2"
shell_11_12 = 3 * mask_11_12 # outer shell, segmentation "3"
result = mask_10_in + shell_10_11 + shell_11_12
print(f"Completed: Sphere with resolution: {resolution}")
return result
def main():
"""The main program."""
# rr = (1, 2, 4, 10) # resolutions (voxels per cm)
rr = (1, 2) # resolutions (voxels per cm)
lims = tuple(map(lambda x: [0, 24 * x], rr)) # limits
tt = tuple(map(lambda x: [0, 12 * x, 24 * x], rr)) # ticks
# User input begin
spheres = {
f"resolution_{i+1}": sphere(resolution=res) for i, res in enumerate(rr)
}
aa = Path(__file__)
# Visualize the elements.
width, height = 10, 5
# width, height = 8, 4
# width, height = 6, 3
fig = plt.figure(figsize=(width, height))
fig2 = plt.figure(figsize=(width, height))
el, az, roll = 63, -110, 0
VOXEL_ALPHA: Final[float] = 0.9
CUT_ALPHA: Final[float] = 1.0
lightsource = LightSource(azdeg=325, altdeg=45) # azimuth, elevation
# lightsource = LightSource(azdeg=325, altdeg=90) # azimuth, elevation
DPI: Final[int] = 300 # resolution, dots per inch
SHOW: Final[bool] = True # turn to True to show the figure on screen
SAVE: Final[bool] = True # turn to True to save .png and .npy files
# Define the custom colormap
# Define the color mapping
# 0: transparent (no color), 1: green, 2: yellow
colors = [
(1, 1, 1, 0), # Transparent for segmentation "0"
(0, 1, 0, 1), # Green for segmentation "1"
(1, 1, 0, 1), # Yellow for segmentation "2"
(1, 0, 1, 1), # Magenta for segmentation "3"
]
custom_cmap = ListedColormap(colors)
# User input end
N_SUBPLOTS = len(spheres)
for index, (key, value) in enumerate(spheres.items()):
if SHOW:
print(f"index: {index}")
print(f"key: {key}")
# print(f"value: {value}")
ax = fig.add_subplot(
1, N_SUBPLOTS, index + 1, projection=Axes3D.name
)
# Create an array for face colors based on the values in the
# `value` array
facecolors = np.empty(
value.shape + (4,), dtype=float
) # Shape (x, y, z, 4) for RGBA
for i in range(value.shape[0]):
for j in range(value.shape[1]):
for k in range(value.shape[2]):
facecolors[i, j, k] = colors[value[i, j, k]]
ax.voxels(
value,
facecolors=facecolors,
# facecolors=colors[3], # outer shell color
# edgecolor=colors[3], # outer shell color
# edgecolor="black", # for better visibility
alpha=VOXEL_ALPHA,
lightsource=lightsource,
)
ax.set_title(key)
# Set labels for the axes
ax.set_xlabel("x (voxels)")
ax.set_ylabel("y (voxels)")
ax.set_zlabel("z (voxels)")
ax.set_xticks(ticks=tt[index])
ax.set_yticks(ticks=tt[index])
ax.set_zticks(ticks=tt[index])
ax.set_xlim(lims[index])
ax.set_ylim(lims[index])
ax.set_zlim(lims[index])
# Set the camera view
ax.set_aspect("equal")
ax.view_init(elev=el, azim=az, roll=roll)
if SAVE: # save the .npy segmentation output
cc = aa.with_stem("spheres_" + key)
dd = cc.with_suffix(".npy")
# Save the data in .npy format
np.save(dd, value)
print(f"Saved: {dd}")
# fig.tight_layout() # don't use as it clips the x-axis label
if SHOW:
plt.show()
if SAVE: # save the .png output
bb = aa.with_suffix(".png")
fig.savefig(bb, dpi=DPI)
print(f"Saved: {bb}")
# Plot along a cutting plane
if SHOW:
for index, (key, value) in enumerate(spheres.items()):
print(f"index: {index}")
print(f"key: {key}")
ax2 = fig2.add_subplot(1, N_SUBPLOTS, index + 1)
# Plot a cutting plane (for example, at the middle of the z-axis)
plot_cutting_plane(
ax2,
key,
value,
plane="z",
index=value.shape[2] // 2,
cmap=custom_cmap,
alpha=CUT_ALPHA,
)
ax2.set_xticks(ticks=tt[index])
ax2.set_yticks(ticks=tt[index])
ax2.set_xlim(lims[index])
ax2.set_ylim(lims[index])
plt.show()
if SAVE:
# overwrite
cc = aa.with_stem(aa.stem + "_cut").with_suffix(".png")
fig2.savefig(cc, dpi=DPI)
print(f"Saved: {cc}")
if __name__ == "__main__":
main()